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Recently, Bauke and Mertens conjectured that the local statistics of energies in random
spin systems with discrete spin space should in most circumstances be the same as
in the random energy model. We review some rigorous results confirming the validity
of this conjecture. In the context of the SK models, we analyse the limits of the validity
of the conjecture for energy levels growing with the volume of the system. In the case of
the Generalised Random energy model, we give a complete analysis for the behaviour
of the local energy statistics at all energy scales. In particular, we show that, in this
case, the REM conjecture holds exactly up to energies EN < βc N , where βc is the
critical temperature. We also explain the more complex behaviour that sets in at higher
energies.
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statistics random energy model

1. INTRODUCTION

The canonical formalism has become the favorite tool to analyse models of sta-
tistical mechanics. The main reason for preferring it over the micro-canonical
formalism is presumably its computational convenience; even in simple examples,
the computation of the phase space volume of all states with a given energy appears
as a rather complicated problem. In the case of disordered systems the advantages
of the canonical approach are even more apparent, and the recent advances in
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particular in the theory of mean-field spin-glasses highlight the computational
power that this formalism can bring to the analysis of high-dimensional random
processes (see these proceedings!).

Rather recently, however, Bauke and Mertens(1) have proposed a new and
original look back at the micro-canonical scenario in precisely the case of dis-
ordered spin systems. This point of view consists in studying very precisely the
statistics of configurations whose energy is very close to a given value. In fact,
in discrete spin systems, for a given system size, the Hamiltonian will take on
a finite number of (random) values, and, at least if the distribution of the disor-
der is continuous, the probability that a given value E is attained will in fact be
zero. One may, however, ask how close the “best” approximant to E will come
when the system size grows. More generally, one may ask what the distribution
of the energies that come closest to E is, and how the values of the corresponding
configurations are distributed in configuration space.

The original motivation for this viewpoint came from a reformulation of a
problem in combinatorial optimisation, the number partitioning problem, in terms
of a spin system Hamiltonian.(2−4) In the randomized version of this problem one
is interested in finding an optimal partition of a set {1, . . . , N } into (two) subsets,
A, B, such that, for a given assignment of independent identically distributed
random variables, Xi , I = 1, . . . , N , the sums

∑
i∈A Xi and

∑
i∈B Xi , are as

close to each other as possible. It is easy to see that this problem is equivalent to
considering the random Hamiltonian

HN (σ ) =
N∑

i=1

Xiσi (1)

with σi ∈ {−1, 1}, and searching for the configuration σ such that HN (σ ) is as
close as possible to the value 0. In this context, Mertens conjectured in Ref. 3 that
the distributions of the close to optimal values is the same as one would obtain
if the random variables HN (σ ) were replaced by the random variables

√
N Xσ

where Xσ are independent standard Gaussian random variables. This conjecture
was proven to be correct in Ref. 5.

Some time later, Bauke and Mertens(1) generalised this conjecture in the
following sense: Let HN (σ ) be the Hamiltonian of any disordered spin system
with discrete spins and with continuously distributed couplings, and let E be any
given real number, then the distribution of the close to optimal approximants of the
level

√
N E is the same as if HN (σ ) are replaced by independent Gaussian random

variables with the same mean and variance as HN (σ ). Moreover, they conjectured
that the spin configurations realising these approximants are uniformly distributed
on configuration space.

All these problems can naturally be considered as extreme value problems
for random variables |N−1/2 HN (σ ) − E |, more precisely, the minima of these
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random variables. The main statement of the Bauke-Mertens conjecture can then be
formulated in the following form: For suitable normalisation constants, C(N , E),
the sequence of point processes,

∑

σ∈SN

δ{C(N ,E)|N−1/2 HN (σ )−E |},

converges, as N ↑ ∞, to the Poisson point process P in IR+ whose intensity
measure is the Lebesgue measure.

Such types of results are quite well-known in the context of correlated random
sequences, in particular in the case of stationary processes, where such results
hold under certain mixing conditions.(6) In the present context, it appears rather
surprising that such a result should hold in great generality. Indeed, it is quite well
known that the correlations of the random variables are strong enough to modify,
e.g. the behaviour of the maxima of the Hamiltonian. Thus there are two questions
beyond the original conjecture that naturally pose themselves: (i) assume we
consider instead of fixed E , N -dependent energy levels, say, EN = cNα , c ∈ IR.
How fast can we allow EN to grow for the REM-like behaviour to hold? and (ii)
what type of behaviour can we expect once EN grows faster than this value? In
this note we discuss some rigorous results around these questions.

2. CRITERIA FOR REM BEHAVIOUR

Our approach in Refs. 7 and 8, and essentially also that of Refs. 5, 9, 10 and
11, to the proof of the REM conjecture is based on the following general fact about
random variables. Let Vi,M ≥ 0, i ∈ IN , be a family of positive random variables
with identical distributions, that are normalized such that

IP(Vi,M < b) ∼ b

M
. (2)

In the case of independent random variables, it would follow that the number
of Vi,M , which are smaller than b, will have Binomial distribution with parameters
M and (approximately) b/M . Assume that (2) holds for all b ∈ IR+. If we plot
the set of all points Vi,M , the number of points within any subset A ⊂ IR+\{0}
will converge to a random variable with Poisson distribution, with parameter the
volume of the set A. Moreover, if A and B are two disjoint subsets, then the
numbers of points within each respective set will be independent. This means that
the random set of points Vi,M converges to a Poisson point process on IR+\{0}. The
question is: under which conditions this is still true, if the random variables Vi,M

are correlated? It turns out that a very useful sufficient condition is the following:
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Lemma 1. If for any fixed number, �, and any collection of bi ≥ 0,

lim
M↑∞

∑

(i1,...,i�)⊂{1,...,M}
IP

(∀�
j=1 Vi j ,M < b j

) →
�∏

j=1

b j , (3)

where the sum is taken over all sequences of different indices (i1, . . . , i�), then

M∑

i=1

δVi,M → P (4)

where P is the Poisson point process on IR with intensity measure the Lebesgue
measure.

A proof of this result can be found in Chapter 13 of ref. 12. Naturally,
we would apply this theorem with Vi,M given by |N−1/2 HN (σ ) − EN |, properly
normalised.

Remark 1. As remarked in Ref. 11, these conditions are also almost necessary
in the following sense. Since we are dealing with random variables, we may
always find a proper normalisation c(N , EN ), such that, for the random variables
Vi,M = c(N , EN )|N−1/2 HN (σ ) − EN |, (3) holds with � = 1. This term is also
equal to the mean of the number of the Vi,M that are smaller than b, i.e. the
random variable NM (b) ≡ ∑M

i=1 1IVi,M <b. Now note that, if we have convergence

to a Poisson process, i.e., if
∑M

i=1 δVi,M → P , then NM (b) must converge to a
Poisson random variable with parameter b. In particular, if a k-th moment of
NM (b) converges to a finite value as M → ∞, then all lower-order moments must
converge to those of the Poisson distribution with parameter b. It is trivial to check
that this is equivalent to saying that if, for some �0 ∈ N , the left-hand side of
(3) converges to a finite value, than for all � < �0, (3) must hold. In particular,
to disprove the REM conjecture, it is enough to check that (3) does not hold for
� = 2 while the left-hand side converges to some value for � = 3.

To understand how this lemma can be applied, it is useful to think of the
random variables N−1/2 HN (σ ) as Gaussian random variables with variance one.
This holds, if the couplings are Gaussian. Otherwise, it is one of the main steps of
the proof to show that they converge, in a strong sense, to Gaussians. If EN = E ,
independently of N , this requires some continuity assumptions on the distributions
of the couplings, otherwise it holds in great generality. If energies EN that go to
infinity are considered, this problem is much harder.

Our general setting is the following. We consider a product space SN where
S is a finite set. We define on SN a real-valued random process, N−1/2 HN (σ ),
σ ∈ SN , where we assume that IE HN (σ ) = 0, IE(HN (σ ))2 = N .
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One problem we have to deal with from the outset are symmetries. We will
not discuss this here in any detail and just replace in all considerations the state
space SN by the space �N of residual classes modulo the group of automorphisms,
G, of SN , that leave HN (σ ) invariant. Let us consider energies

EN = cNα, c, α ∈ IR, 0 ≤ α < 1/2, (5)

and define the sequence

δN =
√

π
2 eE2

N /2|�N |−1. (6)

Note that δN is exponentially small in N ↑ ∞, since α < 1/2. This sequence is
chosen such that for any b ≥ 0,

lim
N↑∞

|�N |IP(|Z − EN | < bδN ) = b, (7)

where Z is standard Gaussian random variable.
In Ref. 8 we have formulated a set of geometric conditions in this setting that

imply that the hypotheses of Lemma 1 hold for Vi,M given by δ−1
N |N−1/2 HN (σ ) −

EN | (and i → σ , M → |�N |), that is,
∑

(σ1 ,...,σ�)∈�N
σ1,...,σ� different

IP
(∀�

i=1 : |N−1/2 HN (σ i ) − EN | < biδN

) → b1 · · · b�. (8)

These assumptions of our theorem are verified in a wide class of physically
relevant models. The examples we verified explicitly in Ref. 8 are: 1) the Gaussian
p-spin SK models and 2) Gaussian short-range spin-glasses. One finds that there
are two threshold values for the allowed growth of EN .

(i) For short-range models and SK-models with p = 1 (which is essentially
the number-partitioning problem), the REM-conjecture can be verified
for EN ∼ cNα , with α < 1/4. In the number-partitioning problem, Borgs
et al.(11) showed that this also holds for non-Gaussian couplings and suitable
conditions on the finiteness of exponential moments.

(ii) In the SK-models with p ≥ 2, the conjecture is valid for EN ∼ cNα , with
α < 1/2.

As pointed out in Ref. 11, these thresholds are sharp in the SK-models with p = 1
and p = 2, in the sense that the REM conjecture fails, if EN = cN 1/4, respectively
EN = cN 1/2, with c small. This can be verified by checking that the conditions
(3) fail for � = 2 in these cases, while the left-hand side converges to some finite
number for � = 3. As pointed out above, this implies that Poisson convergence
cannot hold. For p ≥ 3 it is not clear what happens at the level EN = cN 1/2 with
c small enough. We will discuss this issue in Sec. 3.
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We have also proven the REM conjecture for short-range spin glass models
or p-spin SK models with non-Gaussian couplings, p ≥ 1, and/or non-zero mean,
under assumption α = 0, (see Ref. 8).

3. THE REM CONJECTURE IN THE SK MODELS

Let us now turn in more details to the REM conjecture in the context of
the Sherrington-Kirkpatrick models. Here SN = {−1, 1}N , and the Hamiltonian
is given by

HN (σ ) =
√

N

N p/2

∑

1≤i1,i2,...,i p≤N

Ji1,...,i p σi1σi2 · · · σi p (9)

where Ji1,...,i p are independent standard Gaussian random variables.

3.1. p-Spin Sherrington-Kirkpatrick Models, 0 ≤ α < 1/2

In Ref. 8 we have derived the following theorem.

Theorem 1. If p = 1 and α ∈ [0, 1/4[, or, if p ≥ 2, and α ∈ [0, 1/2[, then, for
any constant c ∈ IR \ {0} the sequence of point processes

PN ≡
∑

σ∈SN

δ{
δ−1

N |N−1/2 HN (σ )−cNα |
} (10)

where δN = 2−N e+c2 N 2α/2
√

π
2 converges weakly to the standard Poisson point

process, P , on IR+.

3.2. p-Spin Sherrington-Kirkpatrick Models, α = 1/2

The obvious question is to know whether the bound on the growth of EN in
the preceding theorem is sharp. In particular, one would want to know whether
in the case p ≥ 2, the REM-conjecture can hold for extensive energies, i.e. for
EN = cN 1/2.

As we will see, there will be a difference between the cases p = 2 and p ≥ 3.
As noted in Ref. 11, the answer is negative in the former case (see below), while
we will show here that it is open in the case p ≥ 3. Below we indicate how one
might go about to address this issue.

Let σ 1, . . . , σ �, be � spin configurations. We denote by mi j ≡ σ i ·σ j

N =
N−1

∑N
k=1 σ i

kσ
j

k . Consider the product space S⊗�
N endowed with the uniform

measure. Let I (m) ≡ I (m1,2, . . . , m�−1,�) be the entropy of the overlaps σ 1 ·
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σ 2/N , . . . , σ �−1 · σ �/N , i.e.

I (m1,2, . . . , m�−1,�) = ln 2 − lim
N↑∞

1

N�
ln #

{
σ 1, . . . , σ � :

σ i · σ j

N
= mi j ,∀i< j

}
.

(11)
It is useful to note that

I (m1,2, . . . , m�−1,�) = −�−1 inf
hi, j ≥0

1≤i< j≤�

ln IEη exp

(
∑

1≤i< j≤�

(ηiη j − mi, j )hi, j

)

(12)

where the ηi are i.i.d. random variables taking the values plus and minus one
with equal probability. Let B�,p ≡ B�,p(m) be the � × � symmetric matrix with
elements m p

i, j , for i < j , and mi,i = 1 on the diagonal. We define the set

M�
N ≡

{

m ∈ [−1, 1]�(�−1)/2 : ∃(σ 1, . . . , σ �) ∈ S�
N : mi, j = σ i · σ j

N
,∀i< j

}

and

M� ≡ lim
N↑∞

∪N
n=1M�

n.

Note that the matrix B�,p(m) ≥ 0, for all m ∈ M�. We set

M̃� ≡ {m ∈ M� : B�,p(m) > 0}.
For m ∈ M̃�, we denote by B−1

�,p ≡ B−1
�,p(m) the inverse of this matrix and we write

b−1
i, j = b−1

i, j (m) for its elements.
Define

ρp,� ≡ sup
m∈M̃�

1 − �−1
∑�

i, j=1 b−1
i, j

I (m)
, (13)

ρp ≡ sup
�≥2

ρp,�.

Conjecture 1. For any p ≥ 3, ρp < ∞. Moreover, limp↑∞ ρp = 1/ ln 2.

Remark 2. It is not difficult to derive from (12) that

I (m) = 1

2�

∑

1≤i< j≤�

m2
i, j + o(‖m‖2), (14)

as

‖m‖ ≡ max
1≤i< j≤�

|mi, j | → 0.

It is also easy to see from the construction of the inverse matrix that

b−1
i, j = −m p

i, j (1 + o(1)), i �= j, b−1
i,i = 1 + O(‖m‖2p), ‖m‖ → 0. (15)
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Consequently,

1 − �−1
�∑

i, j=1

b−1
i, j = 2

�

∑

1≤i< j≤�

m p
i, j (1 + o(1)) + O(‖m‖2p). (16)

Moreover, det B�,p = 1 + O(‖m‖2p). It follows form (14) and (16) that, for p ≥ 3,

1 − �−1
∑�

i, j=1 b−1
i, j

I (m)
≤ 5 max

i< j
|mi j |p−2 → 0, ‖m‖ → 0

(we put 5 instead of 4 to absorb the extra error terms). Let us also note that, since
B−1

�,p is a positively defined matrix, 1 − �−1
∑�

i, j=1 b−1
i, j ≤ 1, for m ∈ M�. These

arguments imply that for any value of � ≥ 2 and any p ≥ 3

ρ�,p ≡ sup
m∈M̃�

� − ∑�
i, j=1 b−1

i, j

I (mi, j )
< ∞.

One also can see that

ρ2,p = sup
−1<m<1

m p/(1 + m p)

(1/4)[(1 + m) ln(1 + m) + (1 − m) ln(1 − m)]
≥ 1

ln 2
,

thus ρp ≥ 1/ ln 2. Moreover, we expect ρp to tend to 1/ ln 2, as p ↑ ∞. In fact, in
the formal limit, when the matrix B�,∞ has only elements zero and ±1, depending
on whether |mi, j | < 1, or mi, j = ±1, one may show easily that ρ∞ = 1/ ln 2.

Note added: While this paper was under review, Alexey Kuptsov(13) has found
a counter-example (the � × �-matrix with constant off-diagonal elements ∼ 1/�)
where he could show that our conjecture is not valid. We discuss the implications
below.

We will now show the validity of the REM conjecture for p ≥ 3 for energies

EN <

√
2ρ−1

p N if ρp < ∞.

Theorem 2. Let HN (σ ) be given by (9), p ≥ 3.

(i) If EN = c
√

N with c2/2 < ρ−1
p,�, then

∑

σ1 ,...,σ�∈SN
σ1 ,...,σ� different

IP(∀�
i=1 : |N−1/2 HN (σ i ) − cN | ≤ δN bi ) → b1 . . . b�, (17)

as N ↑ ∞. converges to b1 · · · b�,
(ii) The assertion (10) holds true for EN = c

√
N with c2/2 < ρ−1

p .

Remark 3. The assertion (ii) of the theorem is of course void for any p for
which Conjecture 1 is false.
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Proof: We will prove the assertion (i). The elements of the matrix B�,p =
B�,p,N (σ 1, . . . , σ �) are:

cov(N−1/2 HN (σ i ), N−1/2 HN (σ j )) =
(σ i · σ j

N

)p
= m p

i, j .

First, let us consider a part of the sum (17) over σ 1, . . . , σ � such that
the matrix B�,p,N (σ 1, . . . , σ �) is non-degenerate. From the representation of
the matrix elements, det B�,p,N (σ 1, . . . , σ �) is a finite polynomial in the vari-
ables σ i · σ j/N , thus its inverse can grow at most polynomially. Hence, for
any σ 1, . . . , σ � with B�,p,N (σ 1, . . . , σ �) non-degenerate, we have the estimate
det B�,p,N (σ 1, . . . , σ �)−1 ≤ N d with some constant d > 0 depending on � and p
only. Since, in addition to this, under the assumption c2/2 < ρ−1

p ≤ ln 2, δN is
exponentially small in N and HN (σ ) are Gaussian random variables with zero
mean and covariance matrix B�,p,N (σ 1, . . . , σ �), it follows that this part of the
sum (17) equals

∑

σ1,...,σ� different
det Bl,p,N (σ1,...,σ�)>0

(2δN )�b1 · · · b�(2π )−�/2(det B�,p,N (σ 1, . . . , σ �))−1/2

× exp
(

− (�c �N )B−1
�,p,N (σ 1, . . . , σ �)(�c �N )/2

)
(1 + o(1))

=
∑

σ1 ,...,σ� different
det Bl,p,N (σ1 ,...,σ�)>0

|SN |�(b1 · · · b�)(det B�,p,N (σ 1, . . . , σ �))−1/2

× exp
(

c2 N

⎛

⎝� −
l∑

i, j=1

b−1
i, j

⎞

⎠ /2
)

(1 + o(1)) (18)

where (�c �N ) is the vector of � coordinates equal to cN , (o(1)) is uniform over
σ 1, . . . , σ � with det B�,p,N (σ 1, . . . , σ �) > 0 as N ↑ ∞.

We split the sum (18) into two sums I 1
N and I 2

N : the first one is over
(σ 1, . . . , σ �) with ‖m‖ < N−ζ and the second one with ‖m‖ > N−ζ for some
fixed 1/3 < ζ < 1/2. Then by (16)

I 1
N =

∑

σ 1,...,σ �: ‖m‖<N−ζ

|SN |−�b1 · · · b�(1 + o(1)) exp

(

c2 N
∑

1≤i< j≤�

m p
i, j (1 + o(1))

)

.

(19)
Since ζ > 1/3 and p ≥ 3, we have that Nm p

i, j = o(1) as N ↑ ∞. So, each term
in the sum (19) is of the order |SN |−�b1 · · · b�(1 + o(1)), where |SN |−� = 2−N�.
Since ζ < 1/2, the number of terms in I 1

N is bounded from below by 2N�(1 −
exp(−hN 1−2ζ )) with some h > 0 and from above by 2N�. Hence, I 1

N converges to
b1 · · · b�.
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To treat the sum I 2
N over ‖m‖ > N−ζ , let us estimate it as

I 2
N ≤ constN d

∑

m∈M̃�
N :

‖m‖>N−ζ

exp

(

c2 N

(

� −
l∑

i, j=1

b−1
i, j

)

/2

)

exp(−N�I (m))

≤ constN d
∑

m∈M̃�
N :

‖m‖>N−ζ

exp(−N�I (m)(1 − c2ρp,�/2)). (20)

Here M̃�
N is a part of M�

N where B�,p,N (m) is non-degenerate.
It follows then from (14), that, for c2/2 < ρp,�, each term in the sum (20)

with N−ζ < ‖m‖ < δ is of the order at most exp(−hN 1−2ζ ) with some constant
h > 0. The number of terms in (20) being polynomial, I 2

N tends to zero as N ↑ ∞.
This completes the analysis of the part of the sum (17) over σ 1, . . . , σ � with
det B�,p,N (σ 1, . . . , σ �) > 0.

It remains to consider parts of the sum (17) where the rank of the matrix
B�,p,N (σ 1, . . . , σ �) equals r < � for r = 1, 2, . . . , � − 1. This means that there
exists an r -tuple of spin configurations, such that the covariance matrix of their
Hamiltonians Br,p,N is non-degenerate and, moreover, the Hamiltonians of the
remaining � − r spin configurations can be represented as linear combinations of
the Hamiltonians of these r configurations. It is well-known(5,14) that the N × r
matrix of these r spin configurations of the basis can not contain all 2r different
rows, but at most 2r − 1 : otherwise one of the remaining � − r configurations
would be equal to one of those r , which is impossible since the sum in (17) is
taken over different � configurations. Moreover, it is also known,(5) that there
exists an N -independent number of possibilities to complete it by � − r appro-
priate configurations up to N × � matrix. Thus, the part of the sum (17) where
rankB�,p,N (σ 1, . . . , σ �) = r < � is bounded by

(
r

�

) ∑

σ1,...,σ� different
det Br,p,N (σ1 ,...,σr )>0

det Bk,p,N (σ1,...,σk )=0, k=r+1,...,�

IP
(∀r

i=1 : |N−1/2 HN (σ i ) − cN | ≤ δN bi

)
(21)

where the number of terms in the sum is O((2r − 1)N ). The part of this sum
over maxi, j∈{1,...,r} |mi, j | > N−ζ converges to zero by the same arguments as in
the case of B�,p,N non-degenerate. The part over maxi, j∈{1,...,r} |mi, j | < N−ζ have
terms of order 2−Nr (1 + o(1)) by the same arguments as in the case of B�,p,N non-
degenerate as well. But since the number of terms in this the sum is O((2r − 1)N ),
it converges to zero exponentially fast. This completes the proof. �

Let us finally turn to the negative results in the cases p = 2 and p = 1.
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Case p = 2. We proceed along the lines of the proof of the previous theorem.
Using (14) and (16), the sum I 1

N is

I 1
N = (2π N )−�(�−1)/4

∑

mi, j ∈M�
N :

|m|<N−ζ

(b1 · · · b�) exp

(

c2 N
∑

1≤i< j≤�

m2
i, j (1 + o(1))

)

× exp

(

− N
∑

1≤i< j≤�

m2
i, j (1 + o(1))/2

)

. (22)

The change of variables si, j = mi, j

√
N shows that when 2c2 < 1, I 1

N converges
to the integral

∫

IR�(�−1)/2
(2π )−�(�−1)/4(b1 · · · b�)

∏

1≤i< j≤�

exp
(
s2

i, j (2c2 − 1)/2
)
dsi, j

which is (b1 · · · b�)(1 − 2c2)−�(�−1)/4. In addition, for given �, if c2/2 < ρ−1
2,� where

ρ2,� = supm∈M̃�

1−�−1 ∑�
i, j=1 b−1

i, j

I (m) , then the same arguments as in the case p ≥ 3 prove
that the remaining part of the sum (17) converges to 0. Hence, in the case p = 2,
for c2 < 2ρ−1

2,� , the sum (17) converges to (b1 · · · b�)(1 − 2c2)−�(�−1)/4. In view of
the remark after Lemma 1, this implies that for small enough c, we cannot have
convergence to a Poisson point process. This was first observed in Ref. 11.

Case p = 1. The case p = 1 is the simplest one. Here we can exclude
Poisson convergence for EN = cN 1/4, for any 0 < c < ∞, not just for small
enough c. Using (14) and (16), the sum I 1

N is

I 1
N = (2π N )−�(�−1)/4

∑

m∈M�
N

|m|>N−ζ

(b1 · · · b�) exp

(

c2
√

N
∑

1≤i< j≤�

mi, j (1 + o(1))

)

× exp

(

− N
∑

1≤i< j≤�

m2
i, j (1 + o(1))/2

)

. (23)

The same change of variables si, j = mi, j

√
N shows that I 1

N converges to the
integral

∫

IR�(�−1)/2
(2π )−�(�−1)/4(b1 · · · b�)

∏

1≤i< j≤�

∏

1≤i< j≤�

exp(si, j c
2 − s2

i, j/2)dsi, j

which is (b1 · · · b�) exp(c4/2)�(�−1)/2. Using (14) for ‖m‖ small enough and the
fact that α = 1/4 for ‖m‖ bounded from below, it is easy to see that the remaining
part of the sum (17) converges to 0.
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In both cases we see that the probability that � variables are small is larger
by a quickly increasing factor const�(�−1) over the Poisson case, which indicates
that “good approximants of EN ” will tend to “lump” together, which is the effect
we should expect from the increasing importance of correlations. It would be very
nice to have a more complete and explicit description of the limiting process.
Unfortunately, it seems that even in the case p = 1, where we have all moments,
these grow too fast with � to determine e.g. the distribution of the number of points
in an interval.
Note added: Due to the observation of Kuptsov, the second assertion of Theorem 2
is void for any p. However, while for p = 1, 2 the convergence to a Poisson process
is disproved by the fact that the terms I 1

N converge to the wrong but finite value,
in the case p ≥ 3, there are finite values cp,m , tending to 0 as m ↑ ∞, such that
the expressions (17) with � ≤ m have the correct limits, while for all larger �, the
bounds on I 2

N , and in fact I 2
N diverge. Thus, the remark after Lemma 1 cannot

be used to deduce that the Poisson convergence fails. The issue remains in an
interesting suspense.

In the next section we turn to another class of models, where we are able to
get a complete picture of what happens after the REM conjecture fails.

4. BEYOND REM BEHAVIOUR

In the particular case of the Generalised Random Energy models (GREMs),
it is possible to analyse completely not only what the precise threshold for the
validity of the REM-conjecture is, but also what happens for higher energy levels.
We briefly summarize these results now. As we will see, in these models there
will be a rather clear link between properties of the local energy statistics and
the properties of the Gibbs measures, quite in contrast to the findings on the SK
models or in short-range models, where non-REM behaviour sets in already at
energy levels that are not linked to equilibrium phase transitions.

Let us briefly recall the definition of the GREM. We consider parameters α0 =
1 < α1, . . . , αn < 2 with

∏n
i=1 αi = 2, a0 = 0 < a1, . . . , an < 1,

∑n
i=1 ai = 1.

Let Xσ1···σ�
, � = 1, . . . , n, be independent standard Gaussian random variables

indexed by σ1 . . . σ� ∈ {−1, 1}N ln(α1···α�)/ ln 2. The Hamiltonian of the GREM is
HN (σ ) ≡ √

N Xσ , with

Xσ ≡ √
a1 Xσ1 + · · · + √

an Xσ1···σn . (24)

Then cov (Xσ , Xσ ′ ) = A(dN (σ, σ ′)), where dN (σ, σ ′) = N−1[min{i : σi �= σ ′
i } −

1], and A(x) is a right-continuous step function on [0, 1] with A(x) = a0 + · · · +
ai , if x ∈ [ln(α0α1, · · · αi )/ ln 2 , ln(α0α1, · · · αi+1)/ ln 2). We will assume here for
simplicity that the linear envelope of the function A is convex.

To formulate our results, we also need to recall from(15) (Lemma 1.2) the
point process of Poisson cascades P� on IR�. It is best understood in terms of the
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following iterative construction. If � = 1, P1 is the Poisson point process on IR1

with the intensity measure e−x dx . To construct P�, we place the process P�−1 on
the plane of the first � − 1 coordinates and through each of its points draw a straight
line orthogonal to this plane. Then we put on each of these lines independently
a Poisson point process with intensity measure e−x dx . These points on IR� form
the process P�.

Let us define the constants d�, � = 0, 1, . . . , n, where d0 = 0 and

d� ≡
�∑

i=1

√
ai 2 ln αi . (25)

Finally, set, for � = 0, . . . , k − 1, as

D� ≡ d� +
√

2 ln α�+1

a�+1

k∑

j=�+1

a j . (26)

It is not difficult to verify that D0 < D1 < · · · < Dn−1. Interestingly, the border
of D0 is the point βc, that is the critical temperature of the respective model. We
are now ready to formulate the main result.

Theorem 2. If |c| < D0 = βc, then, the point process

M0
N =

∑

σ∈SN

δ{2N+1(2π)−1/2e−c2
N N/2|Xσ −cN

√
N |} (27)

converges to the Poisson point process with intensity measure the Lebesgue mea-
sure.

Theorem 3. If for � = 1, . . . , n − 1, D�−1 ≤ c < D�, set

c̃� = |c| − d�, (28)

β� = c̃�

a�+1 + · · · + an
, γi =

√
ai/(2 ln αi ), i = 1, . . . , �, (29)

and

R�(N ) = 2(α�+1 · · · αk)N exp(−Nc̃�β�/2)
√

2π (a�+1 + · · · + ak)

�∏

j=1

(4Nπ ln α j )
−β�γ j /2. (30)

Then, the point process

M�
N =

∑

σ∈SN

δ{
R�(N )

∣
∣√a1 Xσ1 +···+√

an Xσ1 ...σn −c
√

N
∣
∣
} (31)
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converges to mixed Poisson point process on [0,∞[: given a realization of the
random variable ��, its intensity measure is ��dx. The random variables �� is
defined in terms of the Poisson cascades P� via

�� =
∫

IR�

eβ�(γ1x1+···γ�x�)P�(dx1, . . . , dx�). (32)

The proof of these theorems is given in Ref. 16. Here we give a heuristic
interpretation of the main result.

Let us first look at (27). This statement corresponds to the REM-conjecture
of Bauke and Mertens.(1) It is quite remarkable that this conjecture holds in the
case of the GREM for energies of the form cN (namely for c ∈ D0).

In the REM,(17) Xσ are 2N independent standard Gaussian random variables
and a statement (27) would hold for all c with |c| <

√
2 ln 2: it is a well known

result from the theory of independent random variables.(6) The value c = √
2 ln 2

corresponds to the maximum of 2N independent standard Gaussian random vari-
ables, i.e., maxσ∈SN N−1/2 Xσ → √

2 ln 2 a.s. TheRefore, at the level c = √
2 ln 2,

one has the emergence of the extremal process. More precisely, the point process
∑

σ∈�N

δ{√
2N ln 2

(
Xσ −√

2N ln 2+ln(4π N ln 2)/
√

8N ln 2
)}, (33)

that is commonly written as
∑

σ∈SN
δu−1

N (Xσ ) with

uN (x) =
√

2N ln 2 − ln(4π N ln 2)

2
√

2N ln 2
+ x√

2N ln 2
, (34)

converges to the Poisson point process P1 defined above (see e.g. Ref. 6 For
c >

√
2 ln 2, the probability that one of the Xσ will be outside of the domain

{|x | < c
√

N }, goes to zero, and thus it makes no sense to consider such levels.
In the GREM, N−1/2 maxσ∈SN Xσ converges to the value dk ∈ ∂ Dk−1 (25)

(see Theorem 1.5 of Ref. 15) that is generally smaller than
√

2 ln 2. Thus it makes
no sense to consider levels with c �∈ Dk−1. However, the REM-conjecture is not
true for all levels in Dk−1, but only in the smaller domain D0.

To understand the statement of the theorem outside D0, we need to recall how
the extremal process in the GREM is related to the Poisson cascades introduced
above. Let us set SNw�

≡ {−1, 1}Nw� where

w� = ln(α1 · · ·α�)/ ln 2 (35)

and define the functions

U�,N (x) ≡ N 1/2d� − N−1/2
�∑

i=1

γi ln(4π N ln αi )/2 + N−1/2x (36)
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Set

X̂ j
σ ≡

j∑

i=1

√
ai Xσ1...σi , X̌ j

σ ≡
n∑

i= j+1

√
ai Xσ1...σi . (37)

From what was shown in Ref. 15, for any � = 1, . . . , n, the point process,

E�,N ≡
∑

σ̂∈SNw�

δ
U−1

�,N

(
X̂

J�
σ̂

) (38)

converges in law to the Poisson cluster process, E�, given in terms of the Poisson
cascade, P�, as

E� ≡
∫

IR�

P (�)(dx1, . . . , dx�)δ∑�
i=1 γi xi

. (39)

In view of this observation, we can re-write the definition of the process M�
N as

follows:

M�
N =

∑

σ̂∈Sw� N

∑

σ̌∈S(1−w�)N

δ{
R�(N )

∣
∣X̌

J�
σ̂ σ̌

−√
N
[
|c|−d�−N−1

(
��,N −U−1

�,N

(
X̂

J�
σ̂

))]∣
∣
}, (40)

with the abbreviation

��,N ≡
�∑

i=1

γi ln(4π N ln αi )/2 (41)

(c is replaced by |c| due to the symmetry of the standard Gaussian distribution).
The normalizing constant, R�(N ), is chosen such that, for any finite value, U , the
point process

∑

σ̌∈S(1−w� )N

δ{
R�(N )

∣
∣X̌

J�
σ̂ σ̌

−√
N
[
|c|−d�−N−1(��,N −U )

]∣
∣
}

,
(42)

converges to the Poisson point processes on IR+, with intensity measure given
by eU times Lebesgue measure, which is possible because c ∈ D� \ D�−1, that is
|c| − d� is smaller that the limit of N−1/2 maxσ̌∈S(1−w�)N X̌ J�

σ̂ σ̌
. This is completely

analogous to the analysis in the domain D0. Thus each term in the sum over σ̂ in
(40) that gives rise to a “finite” U−1

�,N (X̂ �
σ̂

), i.e., to an element of the extremal process
of X̂ �

σ̂
, gives rise to one Poisson process with a random intensity measure in the

limit of M�
N . This explains how the statement of the theorem can be understood,

and also shows what the geometry of the configurations realizing these mixed
Poisson point processes will be.
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Let us add that, if c ∈ ∂Dk−1, i.e. |c| = dk , then one has the emergence of the
extremal point process (38) with � = k, i.e.

∑

σ∈SN

δ{√N (Xσ −dk

√
N+N−1/2�k,N )} → Ek, (43)

see Ref. 15.
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