Local Energy Statistics in Spin Glasses ${ }^{1}$

Anton Bovier ${ }^{2}$ and Irina Kurkova ${ }^{3}$
Received February 20, 2006; accepted May 31, 2006
Published Online: June 20, 2006

Abstract

Recently, Bauke and Mertens conjectured that the local statistics of energies in random spin systems with discrete spin space should in most circumstances be the same as in the random energy model. We review some rigorous results confirming the validity of this conjecture. In the context of the SK models, we analyse the limits of the validity of the conjecture for energy levels growing with the volume of the system. In the case of the Generalised Random energy model, we give a complete analysis for the behaviour of the local energy statistics at all energy scales. In particular, we show that, in this case, the REM conjecture holds exactly up to energies $E_{N}<\beta_{c} N$, where β_{c} is the critical temperature. We also explain the more complex behaviour that sets in at higher energies.

KEY WORDS: spin glasses, SK model, poisson processes, extreme values, energy statistics random energy model

1. INTRODUCTION

The canonical formalism has become the favorite tool to analyse models of statistical mechanics. The main reason for preferring it over the micro-canonical formalism is presumably its computational convenience; even in simple examples, the computation of the phase space volume of all states with a given energy appears as a rather complicated problem. In the case of disordered systems the advantages of the canonical approach are even more apparent, and the recent advances in

[^0]particular in the theory of mean-field spin-glasses highlight the computational power that this formalism can bring to the analysis of high-dimensional random processes (see these proceedings!).

Rather recently, however, Bauke and Mertens ${ }^{(1)}$ have proposed a new and original look back at the micro-canonical scenario in precisely the case of disordered spin systems. This point of view consists in studying very precisely the statistics of configurations whose energy is very close to a given value. In fact, in discrete spin systems, for a given system size, the Hamiltonian will take on a finite number of (random) values, and, at least if the distribution of the disorder is continuous, the probability that a given value E is attained will in fact be zero. One may, however, ask how close the "best" approximant to E will come when the system size grows. More generally, one may ask what the distribution of the energies that come closest to E is, and how the values of the corresponding configurations are distributed in configuration space.

The original motivation for this viewpoint came from a reformulation of a problem in combinatorial optimisation, the number partitioning problem, in terms of a spin system Hamiltonian. ${ }^{(2-4)}$ In the randomized version of this problem one is interested in finding an optimal partition of a set $\{1, \ldots, N\}$ into (two) subsets, A, B, such that, for a given assignment of independent identically distributed random variables, $X_{i}, I=1, \ldots, N$, the sums $\sum_{i \in A} X_{i}$ and $\sum_{i \in B} X_{i}$, are as close to each other as possible. It is easy to see that this problem is equivalent to considering the random Hamiltonian

$$
\begin{equation*}
H_{N}(\sigma)=\sum_{i=1}^{N} X_{i} \sigma_{i} \tag{1}
\end{equation*}
$$

with $\sigma_{i} \in\{-1,1\}$, and searching for the configuration σ such that $H_{N}(\sigma)$ is as close as possible to the value 0 . In this context, Mertens conjectured in Ref. 3 that the distributions of the close to optimal values is the same as one would obtain if the random variables $H_{N}(\sigma)$ were replaced by the random variables $\sqrt{N} X_{\sigma}$ where X_{σ} are independent standard Gaussian random variables. This conjecture was proven to be correct in Ref. 5.

Some time later, Bauke and Mertens ${ }^{(1)}$ generalised this conjecture in the following sense: Let $H_{N}(\sigma)$ be the Hamiltonian of any disordered spin system with discrete spins and with continuously distributed couplings, and let E be any given real number, then the distribution of the close to optimal approximants of the level $\sqrt{N} E$ is the same as if $H_{N}(\sigma)$ are replaced by independent Gaussian random variables with the same mean and variance as $H_{N}(\sigma)$. Moreover, they conjectured that the spin configurations realising these approximants are uniformly distributed on configuration space.

All these problems can naturally be considered as extreme value problems for random variables $\left|N^{-1 / 2} H_{N}(\sigma)-E\right|$, more precisely, the minima of these
random variables. The main statement of the Bauke-Mertens conjecture can then be formulated in the following form: For suitable normalisation constants, $C(N, E)$, the sequence of point processes,

$$
\sum_{\sigma \in \mathcal{S}_{N}} \delta_{\left\{C(N, E)\left|N^{-1 / 2} H_{N}(\sigma)-E\right|\right\}},
$$

converges, as $N \uparrow \infty$, to the Poisson point process \mathcal{P} in $I R_{+}$whose intensity measure is the Lebesgue measure.

Such types of results are quite well-known in the context of correlated random sequences, in particular in the case of stationary processes, where such results hold under certain mixing conditions. ${ }^{(6)}$ In the present context, it appears rather surprising that such a result should hold in great generality. Indeed, it is quite well known that the correlations of the random variables are strong enough to modify, e.g. the behaviour of the maxima of the Hamiltonian. Thus there are two questions beyond the original conjecture that naturally pose themselves: (i) assume we consider instead of fixed E, N-dependent energy levels, say, $E_{N}=c N^{\alpha}, c \in I R$. How fast can we allow E_{N} to grow for the REM-like behaviour to hold? and (ii) what type of behaviour can we expect once E_{N} grows faster than this value? In this note we discuss some rigorous results around these questions.

2. CRITERIA FOR REM BEHAVIOUR

Our approach in Refs. 7 and 8, and essentially also that of Refs. 5, 9, 10 and 11 , to the proof of the REM conjecture is based on the following general fact about random variables. Let $V_{i, M} \geq 0, i \in I N$, be a family of positive random variables with identical distributions, that are normalized such that

$$
\begin{equation*}
I P\left(V_{i, M}<b\right) \sim \frac{b}{M} \tag{2}
\end{equation*}
$$

In the case of independent random variables, it would follow that the number of $V_{i, M}$, which are smaller than b, will have Binomial distribution with parameters M and (approximately) b / M. Assume that (2) holds for all $b \in I R_{+}$. If we plot the set of all points $V_{i, M}$, the number of points within any subset $A \subset I R_{+} \backslash\{0\}$ will converge to a random variable with Poisson distribution, with parameter the volume of the set A. Moreover, if A and B are two disjoint subsets, then the numbers of points within each respective set will be independent. This means that the random set of points $V_{i, M}$ converges to a Poisson point process on $I R_{+} \backslash\{0\}$. The question is: under which conditions this is still true, if the random variables $V_{i, M}$ are correlated? It turns out that a very useful sufficient condition is the following:

Lemma 1. If for any fixed number, ℓ, and any collection of $b_{i} \geq 0$,

$$
\begin{equation*}
\lim _{M \uparrow \infty} \sum_{\left(i_{1}, \ldots, i_{\ell}\right) \subset\{1, \ldots, M\}} I P\left(\forall_{j=1}^{\ell} V_{i_{j}, M}<b_{j}\right) \rightarrow \prod_{j=1}^{\ell} b_{j}, \tag{3}
\end{equation*}
$$

where the sum is taken over all sequences of different indices $\left(i_{1}, \ldots, i_{\ell}\right)$, then

$$
\begin{equation*}
\sum_{i=1}^{M} \delta_{V_{i, M}} \rightarrow \mathcal{P} \tag{4}
\end{equation*}
$$

where \mathcal{P} is the Poisson point process on $I R$ with intensity measure the Lebesgue measure.

A proof of this result can be found in Chapter 13 of ref. 12. Naturally, we would apply this theorem with $V_{i, M}$ given by $\left|N^{-1 / 2} H_{N}(\sigma)-E_{N}\right|$, properly normalised.

Remark 1. As remarked in Ref. 11, these conditions are also almost necessary in the following sense. Since we are dealing with random variables, we may always find a proper normalisation $c\left(N, E_{N}\right)$, such that, for the random variables $V_{i, M}=c\left(N, E_{N}\right)\left|N^{-1 / 2} H_{N}(\sigma)-E_{N}\right|$, (3) holds with $\ell=1$. This term is also equal to the mean of the number of the $V_{i, M}$ that are smaller than b, i.e. the random variable $N_{M}(b) \equiv \sum_{i=1}^{M} \mathbb{I}_{V_{i, M}<b}$. Now note that, if we have convergence to a Poisson process, i.e., if $\sum_{i=1}^{M} \delta_{V_{i, M}} \rightarrow \mathcal{P}$, then $N_{M}(b)$ must converge to a Poisson random variable with parameter b. In particular, if a k-th moment of $N_{M}(b)$ converges to a finite value as $M \rightarrow \infty$, then all lower-order moments must converge to those of the Poisson distribution with parameter b. It is trivial to check that this is equivalent to saying that if, for some $\ell_{0} \in N$, the left-hand side of (3) converges to a finite value, than for all $\ell<\ell_{0}$, (3) must hold. In particular, to disprove the REM conjecture, it is enough to check that (3) does not hold for $\ell=2$ while the left-hand side converges to some value for $\ell=3$.

To understand how this lemma can be applied, it is useful to think of the random variables $N^{-1 / 2} H_{N}(\sigma)$ as Gaussian random variables with variance one. This holds, if the couplings are Gaussian. Otherwise, it is one of the main steps of the proof to show that they converge, in a strong sense, to Gaussians. If $E_{N}=E$, independently of N, this requires some continuity assumptions on the distributions of the couplings, otherwise it holds in great generality. If energies E_{N} that go to infinity are considered, this problem is much harder.

Our general setting is the following. We consider a product space \mathcal{S}^{N} where \mathcal{S} is a finite set. We define on \mathcal{S}^{N} a real-valued random process, $N^{-1 / 2} H_{N}(\sigma)$, $\sigma \in \mathcal{S}^{N}$, where we assume that $I E H_{N}(\sigma)=0, \operatorname{IE}\left(H_{N}(\sigma)\right)^{2}=N$.

One problem we have to deal with from the outset are symmetries. We will not discuss this here in any detail and just replace in all considerations the state space \mathcal{S}_{N} by the space Σ_{N} of residual classes modulo the group of automorphisms, G, of \mathcal{S}_{N}, that leave $H_{N}(\sigma)$ invariant. Let us consider energies

$$
\begin{equation*}
E_{N}=c N^{\alpha}, \quad c, \alpha \in I R, \quad 0 \leq \alpha<1 / 2 \tag{5}
\end{equation*}
$$

and define the sequence

$$
\begin{equation*}
\delta_{N}=\sqrt{\frac{\pi}{2}} e^{E_{N}^{2} / 2}\left|\Sigma_{N}\right|^{-1} \tag{6}
\end{equation*}
$$

Note that δ_{N} is exponentially small in $N \uparrow \infty$, since $\alpha<1 / 2$. This sequence is chosen such that for any $b \geq 0$,

$$
\begin{equation*}
\lim _{N \uparrow \infty}\left|\Sigma_{N}\right| I P\left(\left|Z-E_{N}\right|<b \delta_{N}\right)=b, \tag{7}
\end{equation*}
$$

where Z is standard Gaussian random variable.
In Ref. 8 we have formulated a set of geometric conditions in this setting that imply that the hypotheses of Lemma 1 hold for $V_{i, M}$ given by $\delta_{N}^{-1} \mid N^{-1 / 2} H_{N}(\sigma)-$ $E_{N} \mid$ (and $i \rightarrow \sigma, M \rightarrow\left|\Sigma_{N}\right|$), that is,

$$
\begin{equation*}
\sum_{\substack{\left(\sigma^{1}, \ldots, \sigma^{\ell}\right) \in \Sigma_{N} \\ \sigma^{1}, \ldots, \sigma^{\ell} \text { different }}} I P\left(\forall_{i=1}^{\ell}:\left|N^{-1 / 2} H_{N}\left(\sigma^{i}\right)-E_{N}\right|<b_{i} \delta_{N}\right) \rightarrow b_{1} \cdots b_{\ell} \tag{8}
\end{equation*}
$$

These assumptions of our theorem are verified in a wide class of physically relevant models. The examples we verified explicitly in Ref. 8 are: 1) the Gaussian p-spin SK models and 2) Gaussian short-range spin-glasses. One finds that there are two threshold values for the allowed growth of E_{N}.
(i) For short-range models and SK-models with $p=1$ (which is essentially the number-partitioning problem), the REM-conjecture can be verified for $E_{N} \sim c N^{\alpha}$, with $\alpha<1 / 4$. In the number-partitioning problem, Borgs et al. ${ }^{(11)}$ showed that this also holds for non-Gaussian couplings and suitable conditions on the finiteness of exponential moments.
(ii) In the SK-models with $p \geq 2$, the conjecture is valid for $E_{N} \sim c N^{\alpha}$, with $\alpha<1 / 2$.

As pointed out in Ref. 11, these thresholds are sharp in the SK-models with $p=1$ and $p=2$, in the sense that the REM conjecture fails, if $E_{N}=c N^{1 / 4}$, respectively $E_{N}=c N^{1 / 2}$, with c small. This can be verified by checking that the conditions (3) fail for $\ell=2$ in these cases, while the left-hand side converges to some finite number for $\ell=3$. As pointed out above, this implies that Poisson convergence cannot hold. For $p \geq 3$ it is not clear what happens at the level $E_{N}=c N^{1 / 2}$ with c small enough. We will discuss this issue in Sec. 3.

We have also proven the REM conjecture for short-range spin glass models or p-spin SK models with non-Gaussian couplings, $p \geq 1$, and/or non-zero mean, under assumption $\alpha=0$, (see Ref. 8).

3. THE REM CONJECTURE IN THE SK MODELS

Let us now turn in more details to the REM conjecture in the context of the Sherrington-Kirkpatrick models. Here $\mathcal{S}_{N}=\{-1,1\}^{N}$, and the Hamiltonian is given by

$$
\begin{equation*}
H_{N}(\sigma)=\frac{\sqrt{N}}{N^{p / 2}} \sum_{1 \leq i_{1}, i_{2}, \ldots, i_{p} \leq N} J_{i_{1}, \ldots, i_{p}} \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{p}} \tag{9}
\end{equation*}
$$

where $J_{i_{1}, \ldots, i_{p}}$ are independent standard Gaussian random variables.

3.1. p-Spin Sherrington-Kirkpatrick Models, $0 \leq \alpha<1 / 2$

In Ref. 8 we have derived the following theorem.
Theorem 1. If $p=1$ and $\alpha \in[0,1 / 4[$, or, if $p \geq 2$, and $\alpha \in[0,1 / 2[$, then, for any constant $c \in I R \backslash\{0\}$ the sequence of point processes

$$
\begin{equation*}
\mathcal{P}_{N} \equiv \sum_{\sigma \in \mathcal{S}_{N}} \delta_{\left\{\delta_{N}^{-1}\left|N^{-1 / 2} H_{N}(\sigma)-c N^{\alpha}\right|\right\}} \tag{10}
\end{equation*}
$$

where $\delta_{N}=2^{-N} e^{+c^{2} N^{2 \alpha} / 2} \sqrt{\frac{\pi}{2}}$ converges weakly to the standard Poisson point process, \mathcal{P}, on $I R_{+}$.

3.2. p-Spin Sherrington-Kirkpatrick Models, $\alpha=1 / 2$

The obvious question is to know whether the bound on the growth of E_{N} in the preceding theorem is sharp. In particular, one would want to know whether in the case $p \geq 2$, the REM-conjecture can hold for extensive energies, i.e. for $E_{N}=c N^{1 / 2}$.

As we will see, there will be a difference between the cases $p=2$ and $p \geq 3$. As noted in Ref. 11, the answer is negative in the former case (see below), while we will show here that it is open in the case $p \geq 3$. Below we indicate how one might go about to address this issue.

Let $\sigma^{1}, \ldots, \sigma^{\ell}$, be ℓ spin configurations. We denote by $m_{i j} \equiv \frac{\sigma^{i} \cdot \sigma^{j}}{N}=$ $N^{-1} \sum_{k=1}^{N} \sigma_{k}^{i} \sigma_{k}^{j}$. Consider the product space $\mathcal{S}_{N}^{\otimes \ell}$ endowed with the uniform measure. Let $I(m) \equiv I\left(m_{1,2}, \ldots, m_{\ell-1, \ell}\right)$ be the entropy of the overlaps σ^{1}.

$$
\sigma^{2} / N, \ldots, \sigma^{\ell-1} \cdot \sigma^{\ell} / N, \text { i.e. }
$$

$$
\begin{equation*}
I\left(m_{1,2}, \ldots, m_{\ell-1, \ell}\right)=\ln 2-\lim _{N \uparrow \infty} \frac{1}{N \ell} \ln \#\left\{\sigma^{1}, \ldots, \sigma^{\ell}: \frac{\sigma^{i} \cdot \sigma^{j}}{N}=m_{i j}, \forall_{i<j}\right\} \tag{11}
\end{equation*}
$$

It is useful to note that

$$
\begin{equation*}
I\left(m_{1,2}, \ldots, m_{\ell-1, \ell}\right)=-\ell^{-1} \inf _{\substack{h_{i, j} \geq 0 \\ 1 \leq i<j \leq \ell}} \ln I E_{\eta} \exp \left(\sum_{1 \leq i<j \leq \ell}\left(\eta_{i} \eta_{j}-m_{i, j}\right) h_{i, j}\right) \tag{12}
\end{equation*}
$$

where the η_{i} are i.i.d. random variables taking the values plus and minus one with equal probability. Let $B_{\ell, p} \equiv B_{\ell, p}(m)$ be the $\ell \times \ell$ symmetric matrix with elements $m_{i, j}^{p}$, for $i<j$, and $m_{i, i}=1$ on the diagonal. We define the set

$$
\mathcal{M}_{N}^{\ell} \equiv\left\{m \in[-1,1]^{\ell(\ell-1) / 2}: \exists\left(\sigma^{1}, \ldots, \sigma^{\ell}\right) \in \mathcal{S}_{N}^{\ell}: m_{i, j}=\frac{\sigma^{i} \cdot \sigma^{j}}{N}, \forall_{i<j}\right\}
$$

and

$$
\mathcal{M}^{\ell} \equiv \overline{\lim _{N \uparrow \infty} \cup_{n=1}^{N} \mathcal{M}_{n}^{\ell}}
$$

Note that the matrix $B_{\ell, p}(m) \geq 0$, for all $m \in \mathcal{M}^{\ell}$. We set

$$
\widetilde{\mathcal{M}}^{\ell} \equiv\left\{m \in \mathcal{M}^{\ell}: B_{\ell, p}(m)>0\right\} .
$$

For $m \in \widetilde{\mathcal{M}}^{\ell}$, we denote by $B_{\ell, p}^{-1} \equiv B_{\ell, p}^{-1}(m)$ the inverse of this matrix and we write $b_{i, j}^{-1}=b_{i, j}^{-1}(m)$ for its elements.

Define

$$
\begin{align*}
\rho_{p, \ell} & \equiv \sup _{m \in \tilde{\mathcal{M}}^{\ell}} \frac{1-\ell^{-1} \sum_{i, j=1}^{\ell} b_{i, j}^{-1}}{I(m)} \tag{13}\\
\rho_{p} & \equiv \sup _{\ell \geq 2} \rho_{p, \ell}
\end{align*}
$$

Conjecture 1. For any $p \geq 3, \rho_{p}<\infty$. Moreover, $\lim _{p \uparrow \infty} \rho_{p}=1 / \ln 2$.
Remark 2. It is not difficult to derive from (12) that

$$
\begin{equation*}
I(m)=\frac{1}{2 \ell} \sum_{1 \leq i<j \leq \ell} m_{i, j}^{2}+o\left(\|m\|^{2}\right) \tag{14}
\end{equation*}
$$

as

$$
\|m\| \equiv \max _{1 \leq i<j \leq \ell}\left|m_{i, j}\right| \rightarrow 0
$$

It is also easy to see from the construction of the inverse matrix that

$$
\begin{equation*}
b_{i, j}^{-1}=-m_{i, j}^{p}(1+o(1)), i \neq j, \quad b_{i, i}^{-1}=1+O\left(\|m\|^{2 p}\right), \quad\|m\| \rightarrow 0 \tag{15}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
1-\ell^{-1} \sum_{i, j=1}^{\ell} b_{i, j}^{-1}=\frac{2}{\ell} \sum_{1 \leq i<j \leq \ell} m_{i, j}^{p}(1+o(1))+O\left(\|m\|^{2 p}\right) \tag{16}
\end{equation*}
$$

Moreover, det $B_{\ell, p}=1+O\left(\|m\|^{2 p}\right)$. It follows form (14) and (16) that, for $p \geq 3$,

$$
\frac{1-\ell^{-1} \sum_{i, j=1}^{\ell} b_{i, j}^{-1}}{I(m)} \leq 5 \max _{i<j}\left|m_{i j}\right|^{p-2} \rightarrow 0, \quad\|m\| \rightarrow 0
$$

(we put 5 instead of 4 to absorb the extra error terms). Let us also note that, since $B_{\ell, p}^{-1}$ is a positively defined matrix, $1-\ell^{-1} \sum_{i, j=1}^{\ell} b_{i, j}^{-1} \leq 1$, for $m \in \mathcal{M}^{\ell}$. These arguments imply that for any value of $\ell \geq 2$ and any $p \geq 3$

$$
\rho_{\ell, p} \equiv \sup _{m \in \widetilde{\mathcal{M}}^{\ell}} \frac{\ell-\sum_{i, j=1}^{\ell} b_{i, j}^{-1}}{I\left(m_{i, j}\right)}<\infty .
$$

One also can see that

$$
\rho_{2, p}=\sup _{-1<m<1} \frac{m^{p} /\left(1+m^{p}\right)}{(1 / 4)[(1+m) \ln (1+m)+(1-m) \ln (1-m)]} \geq \frac{1}{\ln 2}
$$

thus $\rho_{p} \geq 1 / \ln 2$. Moreover, we expect ρ_{p} to tend to $1 / \ln 2$, as $p \uparrow \infty$. In fact, in the formal limit, when the matrix $B_{\ell, \infty}$ has only elements zero and ± 1, depending on whether $\left|m_{i, j}\right|<1$, or $m_{i, j}= \pm 1$, one may show easily that $\rho_{\infty}=1 / \ln 2$.

Note added: While this paper was under review, Alexey Kuptsov ${ }^{(13)}$ has found a counter-example (the $\ell \times \ell$-matrix with constant off-diagonal elements $\sim 1 / \ell$) where he could show that our conjecture is not valid. We discuss the implications below.

We will now show the validity of the REM conjecture for $p \geq 3$ for energies $E_{N}<\sqrt{2 \rho_{p}^{-1} N}$ if $\rho_{p}<\infty$.

Theorem 2. Let $H_{N}(\sigma)$ be given by (9), $p \geq 3$.
(i) If $E_{N}=c \sqrt{N}$ with $c^{2} / 2<\rho_{p, \ell}^{-1}$, then

$$
\begin{equation*}
\sum_{\substack{\sigma^{1}, \ldots, \sigma^{\ell} \in \mathcal{S}_{N} \\ \sigma^{1}, \ldots, \sigma^{\ell} \\ \text { different }}} I P\left(\forall_{i=1}^{\ell}:\left|N^{-1 / 2} H_{N}\left(\sigma^{i}\right)-c N\right| \leq \delta_{N} b_{i}\right) \rightarrow b_{1} \ldots b_{\ell}, \tag{17}
\end{equation*}
$$

as $N \uparrow \infty$. converges to $b_{1} \cdots b_{\ell}$,
(ii) The assertion (10) holds true for $E_{N}=c \sqrt{N}$ with $c^{2} / 2<\rho_{p}^{-1}$.

Remark 3. The assertion (ii) of the theorem is of course void for any p for which Conjecture 1 is false.

Proof: We will prove the assertion (i). The elements of the matrix $B_{\ell, p}=$ $B_{\ell, p, N}\left(\sigma^{1}, \ldots, \sigma^{\ell}\right)$ are:

$$
\operatorname{cov}\left(N^{-1 / 2} H_{N}\left(\sigma^{i}\right), N^{-1 / 2} H_{N}\left(\sigma^{j}\right)\right)=\left(\frac{\sigma^{i} \cdot \sigma^{j}}{N}\right)^{p}=m_{i, j}^{p}
$$

First, let us consider a part of the sum (17) over $\sigma^{1}, \ldots, \sigma^{\ell}$ such that the matrix $B_{\ell, p, N}\left(\sigma^{1}, \ldots, \sigma^{\ell}\right)$ is non-degenerate. From the representation of the matrix elements, $\operatorname{det} B_{\ell, p, N}\left(\sigma^{1}, \ldots, \sigma^{\ell}\right)$ is a finite polynomial in the variables $\sigma^{i} \cdot \sigma^{j} / N$, thus its inverse can grow at most polynomially. Hence, for any $\sigma^{1}, \ldots, \sigma^{\ell}$ with $B_{\ell, p, N}\left(\sigma^{1}, \ldots, \sigma^{\ell}\right)$ non-degenerate, we have the estimate $\operatorname{det} B_{\ell, p, N}\left(\sigma^{1}, \ldots, \sigma^{\ell}\right)^{-1} \leq N^{d}$ with some constant $d>0$ depending on ℓ and p only. Since, in addition to this, under the assumption $c^{2} / 2<\rho_{p}^{-1} \leq \ln 2, \delta_{N}$ is exponentially small in N and $H_{N}(\sigma)$ are Gaussian random variables with zero mean and covariance matrix $B_{\ell, p, N}\left(\sigma^{1}, \ldots, \sigma^{\ell}\right)$, it follows that this part of the sum (17) equals

$$
\begin{align*}
& \sum_{\substack{\sigma^{1}, \ldots, \sigma^{\ell} \\
\operatorname{det} B_{l, p, N}\left(\sigma^{\sigma^{\prime}} \ldots, \ldots \sigma^{\ell}\right)>0}}\left(2 \delta_{N}\right)^{\ell} b_{1} \cdots b_{\ell}(2 \pi)^{-\ell / 2}\left(\operatorname{det} B_{\ell, p, N}\left(\sigma^{1}, \ldots, \sigma^{\ell}\right)\right)^{-1 / 2} \\
& \quad \times \exp \left(-(\vec{c} \vec{N}) B_{\ell, p, N}^{-1}\left(\sigma^{1}, \ldots, \sigma^{\ell}\right)(\vec{c} \vec{N}) / 2\right)(1+o(1)) \\
& =\sum_{\substack{\sigma^{1} 1, \ldots \sigma^{\ell} \text { different } \\
\text { det } B_{l, p, N}\left(\sigma^{\prime}, \ldots, \sigma^{\ell}\right)>0}}\left|\mathcal{S}_{N}\right|^{\ell}\left(b_{1} \cdots b_{\ell}\right)\left(\operatorname{det} B_{\ell, p, N}\left(\sigma^{1}, \ldots, \sigma^{\ell}\right)\right)^{-1 / 2} \\
& \quad \times \exp \left(c^{2} N\left(\ell-\sum_{i, j=1}^{l} b_{i, j}^{-1}\right) / 2\right)(1+o(1)) \tag{18}
\end{align*}
$$

where $(\vec{c} \vec{N})$ is the vector of ℓ coordinates equal to $c N$, (o(1)) is uniform over $\sigma^{1}, \ldots, \sigma^{\ell}$ with $\operatorname{det} B_{\ell, p, N}\left(\sigma^{1}, \ldots, \sigma^{\ell}\right)>0$ as $N \uparrow \infty$.

We split the sum (18) into two sums I_{N}^{1} and I_{N}^{2} : the first one is over $\left(\sigma^{1}, \ldots, \sigma^{\ell}\right)$ with $\|m\|<N^{-\zeta}$ and the second one with $\|m\|>N^{-\zeta}$ for some fixed $1 / 3<\zeta<1 / 2$. Then by (16)

$$
\begin{equation*}
I_{N}^{1}=\sum_{\sigma^{1}, \ldots, \sigma^{\ell}:\|m\|<N^{-\zeta}}\left|\mathcal{S}_{N}\right|^{-\ell} b_{1} \cdots b_{\ell}(1+o(1)) \exp \left(c^{2} N \sum_{1 \leq i<j \leq \ell} m_{i, j}^{p}(1+o(1))\right) \tag{19}
\end{equation*}
$$

Since $\zeta>1 / 3$ and $p \geq 3$, we have that $N m_{i, j}^{p}=o(1)$ as $N \uparrow \infty$. So, each term in the sum (19) is of the order $\left|\mathcal{S}_{N}\right|^{-\ell} b_{1} \cdots b_{\ell}(1+o(1))$, where $\left|\mathcal{S}_{N}\right|^{-\ell}=2^{-N \ell}$. Since $\zeta<1 / 2$, the number of terms in I_{N}^{1} is bounded from below by $2^{N \ell}(1-$ $\exp \left(-h N^{1-2 \zeta}\right)$) with some $h>0$ and from above by $2^{N \ell}$. Hence, I_{N}^{1} converges to $b_{1} \cdots b_{\ell}$.

To treat the sum I_{N}^{2} over $\|m\|>N^{-\zeta}$, let us estimate it as

$$
\begin{align*}
I_{N}^{2} & \leq \operatorname{const} N^{d} \sum_{\substack{m \in \widetilde{\mathcal{M}}_{N}^{\ell}: \\
\|m\|>N^{-\zeta}}} \exp \left(c^{2} N\left(\ell-\sum_{i, j=1}^{l} b_{i, j}^{-1}\right) / 2\right) \exp (-N \ell I(m)) \\
& \leq \operatorname{const} N^{d} \sum_{\substack{m \in \widetilde{\mathcal{M}}_{N}^{\ell}: \\
\|m\|>N^{-\zeta}}} \exp \left(-N \ell I(m)\left(1-c^{2} \rho_{p, \ell} / 2\right)\right) \tag{20}
\end{align*}
$$

Here $\widetilde{\mathcal{M}}_{N}^{\ell}$ is a part of \mathcal{M}_{N}^{ℓ} where $B_{\ell, p, N}(m)$ is non-degenerate.
It follows then from (14), that, for $c^{2} / 2<\rho_{p, \ell}$, each term in the sum (20) with $N^{-\zeta}<\|m\|<\delta$ is of the order at most $\exp \left(-h N^{1-2 \zeta}\right)$ with some constant $h>0$. The number of terms in (20) being polynomial, I_{N}^{2} tends to zero as $N \uparrow \infty$. This completes the analysis of the part of the sum (17) over $\sigma^{1}, \ldots, \sigma^{\ell}$ with $\operatorname{det} B_{\ell, p, N}\left(\sigma^{1}, \ldots, \sigma^{\ell}\right)>0$.

It remains to consider parts of the sum (17) where the rank of the matrix $B_{\ell, p, N}\left(\sigma^{1}, \ldots, \sigma^{\ell}\right)$ equals $r<\ell$ for $r=1,2, \ldots, \ell-1$. This means that there exists an r-tuple of spin configurations, such that the covariance matrix of their Hamiltonians $B_{r, p, N}$ is non-degenerate and, moreover, the Hamiltonians of the remaining $\ell-r$ spin configurations can be represented as linear combinations of the Hamiltonians of these r configurations. It is well-known ${ }^{(5,14)}$ that the $N \times r$ matrix of these r spin configurations of the basis can not contain all 2^{r} different rows, but at most $2^{r}-1$: otherwise one of the remaining $\ell-r$ configurations would be equal to one of those r, which is impossible since the sum in (17) is taken over different ℓ configurations. Moreover, it is also known, ${ }^{(5)}$ that there exists an N-independent number of possibilities to complete it by $\ell-r$ appropriate configurations up to $N \times \ell$ matrix. Thus, the part of the sum (17) where $\operatorname{rank} B_{\ell, p, N}\left(\sigma^{1}, \ldots, \sigma^{\ell}\right)=r<\ell$ is bounded by

$$
\begin{equation*}
\binom{r}{\ell} \sum_{\substack{\left.\sigma^{1}, \ldots, \sigma^{\ell} \text { different } \\ \text { det } B_{r}, \ldots, N \\ \text { dot } \\ \operatorname{det} B_{k, p, N, N}\left(\sigma^{1}, \ldots, \sigma^{k}\right)=0, \sigma^{\prime}\right) \geq 0 \\ k=r+1, \ldots \ell}} I P\left(\forall_{i=1}^{r}:\left|N^{-1 / 2} H_{N}\left(\sigma^{i}\right)-c N\right| \leq \delta_{N} b_{i}\right) \tag{21}
\end{equation*}
$$

where the number of terms in the sum is $O\left(\left(2^{r}-1\right)^{N}\right)$. The part of this sum over $\max _{i, j \in\{1, \ldots, r\}}\left|m_{i, j}\right|>N^{-\zeta}$ converges to zero by the same arguments as in the case of $B_{\ell, p, N}$ non-degenerate. The part over $\max _{i, j \in\{1, \ldots, r\}}\left|m_{i, j}\right|<N^{-\zeta}$ have terms of order $2^{-N r}(1+o(1))$ by the same arguments as in the case of $B_{\ell, p, N}$ nondegenerate as well. But since the number of terms in this the sum is $O\left(\left(2^{r}-1\right)^{N}\right)$, it converges to zero exponentially fast. This completes the proof.

Let us finally turn to the negative results in the cases $p=2$ and $p=1$.

Case $p=2$. We proceed along the lines of the proof of the previous theorem. Using (14) and (16), the sum I_{N}^{1} is

$$
\begin{align*}
I_{N}^{1}= & (2 \pi N)^{-\ell(\ell-1) / 4} \sum_{\substack{m_{i, j} \in \mathcal{M}_{N}^{\ell}: \\
|m|<N-5}}\left(b_{1} \cdots b_{\ell}\right) \exp \left(c^{2} N \sum_{1 \leq i<j \leq \ell} m_{i, j}^{2}(1+o(1))\right) \\
& \times \exp \left(-N \sum_{1 \leq i<j \leq \ell} m_{i, j}^{2}(1+o(1)) / 2\right) \tag{22}
\end{align*}
$$

The change of variables $s_{i, j}=m_{i, j} \sqrt{N}$ shows that when $2 c^{2}<1, I_{N}^{1}$ converges to the integral

$$
\int_{\mathbb{R}^{\ell \ell-1) / 2}}(2 \pi)^{-\ell(\ell-1) / 4}\left(b_{1} \cdots b_{\ell}\right) \prod_{1 \leq i<j \leq \ell} \exp \left(s_{i, j}^{2}\left(2 c^{2}-1\right) / 2\right) d s_{i, j}
$$

which is $\left(b_{1} \cdots b_{\ell}\right)\left(1-2 c^{2}\right)^{-\ell(\ell-1) / 4}$. In addition, for given ℓ, if $c^{2} / 2<\rho_{2, \ell}^{-1}$ where $\rho_{2, \ell}=\sup _{m \in \widetilde{\mathcal{M}}^{\ell}} \frac{1-\ell^{-1} \sum_{i, j=1}^{\ell} b_{i, j}^{-1}}{I(m)}$, then the same arguments as in the case $p \geq 3$ prove that the remaining part of the sum (17) converges to 0 . Hence, in the case $p=2$, for $c^{2}<2 \rho_{2, \ell}^{-1}$, the sum (17) converges to $\left(b_{1} \cdots b_{\ell}\right)\left(1-2 c^{2}\right)^{-\ell(\ell-1) / 4}$. In view of the remark after Lemma 1, this implies that for small enough c, we cannot have convergence to a Poisson point process. This was first observed in Ref. 11.

Case $p=1$. The case $p=1$ is the simplest one. Here we can exclude Poisson convergence for $E_{N}=c N^{1 / 4}$, for any $0<c<\infty$, not just for small enough c. Using (14) and (16), the sum I_{N}^{1} is

$$
\begin{align*}
I_{N}^{1}= & (2 \pi N)^{-\ell(\ell-1) / 4} \sum_{\substack{m \in \mathcal{M}_{N}^{\ell} \\
|m|>N^{-\zeta}}}\left(b_{1} \cdots b_{\ell}\right) \exp \left(c^{2} \sqrt{N} \sum_{1 \leq i<j \leq \ell} m_{i, j}(1+o(1))\right) \\
& \times \exp \left(-N \sum_{1 \leq i<j \leq \ell} m_{i, j}^{2}(1+o(1)) / 2\right) . \tag{23}
\end{align*}
$$

The same change of variables $s_{i, j}=m_{i, j} \sqrt{N}$ shows that I_{N}^{1} converges to the integral

$$
\int_{\mathbb{R}^{\ell(\ell-1) / 2}}(2 \pi)^{-\ell(\ell-1) / 4}\left(b_{1} \cdots b_{\ell}\right) \prod_{1 \leq i<j \leq \ell} \prod_{1 \leq i<j \leq \ell} \exp \left(s_{i, j} c^{2}-s_{i, j}^{2} / 2\right) d s_{i, j}
$$

which is $\left(b_{1} \cdots b_{\ell}\right) \exp \left(c^{4} / 2\right)^{\ell(\ell-1) / 2}$. Using (14) for $\|m\|$ small enough and the fact that $\alpha=1 / 4$ for $\|m\|$ bounded from below, it is easy to see that the remaining part of the sum (17) converges to 0 .

In both cases we see that the probability that ℓ variables are small is larger by a quickly increasing factor const ${ }^{\ell(\ell-1)}$ over the Poisson case, which indicates that "good approximants of E_{N} " will tend to "lump" together, which is the effect we should expect from the increasing importance of correlations. It would be very nice to have a more complete and explicit description of the limiting process. Unfortunately, it seems that even in the case $p=1$, where we have all moments, these grow too fast with ℓ to determine e.g. the distribution of the number of points in an interval.
Note added: Due to the observation of Kuptsov, the second assertion of Theorem 2 is void for any p. However, while for $p=1,2$ the convergence to a Poisson process is disproved by the fact that the terms I_{N}^{1} converge to the wrong but finite value, in the case $p \geq 3$, there are finite values $c_{p, m}$, tending to 0 as $m \uparrow \infty$, such that the expressions (17) with $\ell \leq m$ have the correct limits, while for all larger ℓ, the bounds on I_{N}^{2}, and in fact I_{N}^{2} diverge. Thus, the remark after Lemma 1 cannot be used to deduce that the Poisson convergence fails. The issue remains in an interesting suspense.

In the next section we turn to another class of models, where we are able to get a complete picture of what happens after the REM conjecture fails.

4. BEYOND REM BEHAVIOUR

In the particular case of the Generalised Random Energy models (GREMs), it is possible to analyse completely not only what the precise threshold for the validity of the REM-conjecture is, but also what happens for higher energy levels. We briefly summarize these results now. As we will see, in these models there will be a rather clear link between properties of the local energy statistics and the properties of the Gibbs measures, quite in contrast to the findings on the SK models or in short-range models, where non-REM behaviour sets in already at energy levels that are not linked to equilibrium phase transitions.

Let us briefly recall the definition of the GREM. We consider parameters $\alpha_{0}=$ $1<\alpha_{1}, \ldots, \alpha_{n}<2$ with $\prod_{i=1}^{n} \alpha_{i}=2, a_{0}=0<a_{1}, \ldots, a_{n}<1, \sum_{i=1}^{n} a_{i}=1$. Let $X_{\sigma_{1} \cdots \sigma_{\ell}}, \ell=1, \ldots, n$, be independent standard Gaussian random variables indexed by $\sigma_{1} \ldots \sigma_{\ell} \in\{-1,1\}^{N \ln \left(\alpha_{1} \cdots \alpha_{\ell}\right) / \ln 2}$. The Hamiltonian of the GREM is $H_{N}(\sigma) \equiv \sqrt{N} X_{\sigma}$, with

$$
\begin{equation*}
X_{\sigma} \equiv \sqrt{a_{1}} X_{\sigma_{1}}+\cdots+\sqrt{a_{n}} X_{\sigma_{1} \cdots \sigma_{n}} . \tag{24}
\end{equation*}
$$

Then $\operatorname{cov}\left(X_{\sigma}, X_{\sigma^{\prime}}\right)=A\left(d_{N}\left(\sigma, \sigma^{\prime}\right)\right)$, where $d_{N}\left(\sigma, \sigma^{\prime}\right)=N^{-1}\left[\min \left\{i: \sigma_{i} \neq \sigma_{i}^{\prime}\right\}-\right.$ 1], and $A(x)$ is a right-continuous step function on [0, 1] with $A(x)=a_{0}+\cdots+$ a_{i}, if $x \in\left[\ln \left(\alpha_{0} \alpha_{1}, \cdots \alpha_{i}\right) / \ln 2, \ln \left(\alpha_{0} \alpha_{1}, \cdots \alpha_{i+1}\right) / \ln 2\right)$. We will assume here for simplicity that the linear envelope of the function A is convex.

To formulate our results, we also need to recall from ${ }^{(15)}$ (Lemma 1.2) the point process of Poisson cascades \mathcal{P}^{ℓ} on $I R^{\ell}$. It is best understood in terms of the
following iterative construction. If $\ell=1, \mathcal{P}^{1}$ is the Poisson point process on $I R^{1}$ with the intensity measure $e^{-x} d x$. To construct \mathcal{P}^{ℓ}, we place the process $\mathcal{P}^{\ell-1}$ on the plane of the first $\ell-1$ coordinates and through each of its points draw a straight line orthogonal to this plane. Then we put on each of these lines independently a Poisson point process with intensity measure $e^{-x} d x$. These points on $I R^{\ell}$ form the process \mathcal{P}^{ℓ}.

Let us define the constants $d_{\ell}, \ell=0,1, \ldots, n$, where $d_{0}=0$ and

$$
\begin{equation*}
d_{\ell} \equiv \sum_{i=1}^{\ell} \sqrt{a_{i} 2 \ln \alpha_{i}} \tag{25}
\end{equation*}
$$

Finally, set, for $\ell=0, \ldots, k-1$, as

$$
\begin{equation*}
D_{\ell} \equiv d_{\ell}+\sqrt{\frac{2 \ln \alpha_{\ell+1}}{a_{\ell+1}}} \sum_{j=\ell+1}^{k} a_{j} \tag{26}
\end{equation*}
$$

It is not difficult to verify that $D_{0}<D_{1}<\cdots<D_{n-1}$. Interestingly, the border of D_{0} is the point β_{c}, that is the critical temperature of the respective model. We are now ready to formulate the main result.

Theorem 2. If $|c|<D_{0}=\beta_{c}$, then, the point process

$$
\begin{equation*}
\mathcal{M}_{N}^{0}=\sum_{\sigma \in \mathcal{S}_{N}} \delta_{\left\{2^{N+1}(2 \pi)^{-1 / 2} e^{-c_{N}^{2} / 2}\left|X_{\sigma}-c_{N} \sqrt{N}\right|\right\}} \tag{27}
\end{equation*}
$$

converges to the Poisson point process with intensity measure the Lebesgue measure.

Theorem 3. If for $\ell=1, \ldots, n-1, D_{\ell-1} \leq c<D_{\ell}$, set

$$
\begin{gather*}
\tilde{c}_{\ell}=|c|-d_{\ell} \tag{28}\\
\beta_{\ell}=\frac{\tilde{c}_{\ell}}{a_{\ell+1}+\cdots+a_{n}}, \quad \gamma_{i}=\sqrt{a_{i} /\left(2 \ln \alpha_{i}\right)}, \quad i=1, \ldots, \ell \tag{29}
\end{gather*}
$$

and

$$
\begin{equation*}
R_{\ell}(N)=\frac{2\left(\alpha_{\ell+1} \cdots \alpha_{k}\right)^{N} \exp \left(-N \tilde{c}_{\ell} \beta_{\ell} / 2\right)}{\sqrt{2 \pi\left(a_{\ell+1}+\cdots+a_{k}\right)}} \prod_{j=1}^{\ell}\left(4 N \pi \ln \alpha_{j}\right)^{-\beta_{\ell} \gamma_{j} / 2} \tag{30}
\end{equation*}
$$

Then, the point process

$$
\begin{equation*}
\mathcal{M}_{N}^{\ell}=\sum_{\sigma \in \mathcal{S}_{N}} \delta_{\left\{R_{\ell}(N)\left|\sqrt{a_{1}} X_{\sigma_{1}}+\cdots+\sqrt{a_{n}} X_{\sigma_{1} \ldots \sigma_{n}}-c \sqrt{N}\right|\right\}} \tag{31}
\end{equation*}
$$

converges to mixed Poisson point process on $[0, \infty[$: given a realization of the random variable Λ_{ℓ}, its intensity measure is $\Lambda_{\ell} d x$. The random variables Λ_{ℓ} is defined in terms of the Poisson cascades \mathcal{P}_{ℓ} via

$$
\begin{equation*}
\Lambda_{\ell}=\int_{\mathbb{R}^{\ell}} e^{\beta_{\ell}\left(\gamma_{1} x_{1}+\cdots \gamma_{\ell} x_{\ell}\right)} \mathcal{P}^{\ell}\left(d x_{1}, \ldots, d x_{\ell}\right) . \tag{32}
\end{equation*}
$$

The proof of these theorems is given in Ref. 16. Here we give a heuristic interpretation of the main result.

Let us first look at (27). This statement corresponds to the REM-conjecture of Bauke and Mertens. ${ }^{(1)}$ It is quite remarkable that this conjecture holds in the case of the GREM for energies of the form $c N$ (namely for $c \in \mathcal{D}_{0}$).

In the REM, ${ }^{(17)} X_{\sigma}$ are 2^{N} independent standard Gaussian random variables and a statement (27) would hold for all c with $|c|<\sqrt{2 \ln 2}$: it is a well known result from the theory of independent random variables. ${ }^{(6)}$ The value $c=\sqrt{2 \ln 2}$ corresponds to the maximum of 2^{N} independent standard Gaussian random variables, i.e., $\max _{\sigma \in \mathcal{S}_{N}} N^{-1 / 2} X_{\sigma} \rightarrow \sqrt{2 \ln 2}$ a.s. TheRefore, at the level $c=\sqrt{2 \ln 2}$, one has the emergence of the extremal process. More precisely, the point process

$$
\begin{equation*}
\sum_{\sigma \in \Sigma_{N}} \delta_{\left\{\sqrt{2 N \ln 2}\left(X_{\sigma}-\sqrt{2 N \ln 2}+\ln (4 \pi N \ln 2) / \sqrt{8 N \ln 2}\right)\right\}, ~}^{\text {, }} \tag{33}
\end{equation*}
$$

that is commonly written as $\sum_{\sigma \in \mathcal{S}_{N}} \delta_{u_{N}^{-1}\left(X_{\sigma}\right)}$ with

$$
\begin{equation*}
u_{N}(x)=\sqrt{2 N \ln 2}-\frac{\ln (4 \pi N \ln 2)}{2 \sqrt{2 N \ln 2}}+\frac{x}{\sqrt{2 N \ln 2}} \tag{34}
\end{equation*}
$$

converges to the Poisson point process \mathcal{P}^{1} defined above (see e.g. Ref. 6 For $c>\sqrt{2 \ln 2}$, the probability that one of the X_{σ} will be outside of the domain $\{|x|<c \sqrt{N}\}$, goes to zero, and thus it makes no sense to consider such levels.

In the GREM, $N^{-1 / 2} \max _{\sigma \in \mathcal{S}_{N}} X_{\sigma}$ converges to the value $d_{k} \in \partial D_{k-1}$ (25) (see Theorem 1.5 of Ref. 15) that is generally smaller than $\sqrt{2 \ln 2}$. Thus it makes no sense to consider levels with $c \notin \bar{D}_{k-1}$. However, the REM-conjecture is not true for all levels in \mathcal{D}_{k-1}, but only in the smaller domain \mathcal{D}_{0}.

To understand the statement of the theorem outside \mathcal{D}_{0}, we need to recall how the extremal process in the GREM is related to the Poisson cascades introduced above. Let us set $\mathcal{S}_{N w_{\ell}} \equiv\{-1,1\}^{N w_{\ell}}$ where

$$
\begin{equation*}
w_{\ell}=\ln \left(\alpha_{1} \cdots \alpha_{\ell}\right) / \ln 2 \tag{35}
\end{equation*}
$$

and define the functions

$$
\begin{equation*}
U_{\ell, N}(x) \equiv N^{1 / 2} d_{\ell}-N^{-1 / 2} \sum_{i=1}^{\ell} \gamma_{i} \ln \left(4 \pi N \ln \alpha_{i}\right) / 2+N^{-1 / 2} x \tag{36}
\end{equation*}
$$

Set

$$
\begin{equation*}
\widehat{X}_{\sigma}^{j} \equiv \sum_{i=1}^{j} \sqrt{a}_{i} X_{\sigma_{1} \ldots \sigma_{i}}, \quad \check{X}_{\sigma}^{j} \equiv \sum_{i=j+1}^{n} \sqrt{a_{i}} X_{\sigma_{1} \ldots \sigma_{i}} . \tag{37}
\end{equation*}
$$

From what was shown in Ref. 15 , for any $\ell=1, \ldots, n$, the point process,

$$
\begin{equation*}
\mathcal{E}_{\ell, N} \equiv \sum_{\hat{\sigma} \in \mathcal{S}_{N_{w_{\ell}}}} \delta_{U_{\ell, N}^{-1}\left(\widehat{X}_{\hat{\sigma}}^{J}\right)} \tag{38}
\end{equation*}
$$

converges in law to the Poisson cluster process, \mathcal{E}_{ℓ}, given in terms of the Poisson cascade, \mathcal{P}^{ℓ}, as

$$
\begin{equation*}
\mathcal{E}_{\ell} \equiv \int_{\mathbb{R}^{\ell}} \mathcal{P}^{(\ell)}\left(d x_{1}, \ldots, d x_{\ell}\right) \delta_{\sum_{i=1}^{\ell} \gamma_{i} x_{i}} \tag{39}
\end{equation*}
$$

In view of this observation, we can re-write the definition of the process \mathcal{M}_{N}^{ℓ} as follows:

$$
\begin{equation*}
\mathcal{M}_{N}^{\ell}=\sum_{\hat{\sigma} \in \mathcal{S}_{w_{\ell} N}} \sum_{\check{\sigma} \in \mathcal{S}_{\left(1-w_{\ell}\right) N}} \delta_{\left\{R_{\ell}(N)\left|\check{X}_{\grave{\sigma} \check{\delta}}^{J_{\ell}}-\sqrt{N}\left[|c|-d_{\ell}-N^{-1}\left(\Gamma_{\ell, N}-U_{\ell, N}^{-1}\left(\widehat{X}_{\dot{\sigma}}^{J_{\ell}}\right)\right)\right]\right|\right\}, ~} \tag{40}
\end{equation*}
$$

with the abbreviation

$$
\begin{equation*}
\Gamma_{\ell, N} \equiv \sum_{i=1}^{\ell} \gamma_{i} \ln \left(4 \pi N \ln \alpha_{i}\right) / 2 \tag{41}
\end{equation*}
$$

(c is replaced by $|c|$ due to the symmetry of the standard Gaussian distribution). The normalizing constant, $R_{\ell}(N)$, is chosen such that, for any finite value, U, the point process
converges to the Poisson point processes on $I R_{+}$, with intensity measure given by e^{U} times Lebesgue measure, which is possible because $c \in \mathcal{D}_{\ell} \backslash \overline{\mathcal{D}_{\ell-1}}$, that is $|c|-d_{\ell}$ is smaller that the limit of $N^{-1 / 2} \max _{\check{\sigma} \in \mathcal{S}_{\left(1-w_{\ell}\right)}} \check{X}_{\tilde{\sigma} \check{\sigma}}^{J_{\ell}}$. This is completely analogous to the analysis in the domain \mathcal{D}_{0}. Thus each term in the sum over $\hat{\sigma}$ in (40) that gives rise to a "finite" $U_{\ell, N}^{-1}\left(\widehat{X}_{\hat{\sigma}}^{\ell}\right)$, i.e., to an element of the extremal process of $\widehat{X}_{\hat{\sigma}}^{\ell}$, gives rise to one Poisson process with a random intensity measure in the limit of \mathcal{M}_{N}^{ℓ}. This explains how the statement of the theorem can be understood, and also shows what the geometry of the configurations realizing these mixed Poisson point processes will be.

Let us add that, if $c \in \partial \mathcal{D}_{k-1}$, i.e. $|c|=d_{k}$, then one has the emergence of the extremal point process (38) with $\ell=k$, i.e.

$$
\begin{equation*}
\sum_{\sigma \in \mathcal{S}_{N}} \delta_{\left\{\sqrt{N}\left(X_{\sigma}-d_{k} \sqrt{N}+N^{-1 / 2} \Gamma_{k, N}\right)\right\}} \rightarrow \mathcal{E}_{k}, \tag{43}
\end{equation*}
$$

see Ref. 15.

ACKNOWLEDGMENTS

We would like to thank Stephan Mertens for interesting discussions. AB also thanks the organisers of the workshop "Mathematical Physics of Spin Glasses," M. Aizenmann, P. Contucci, S. Graffi, and F. Guerra, for the kind invitation and excellent organisation.

REFERENCES

1. H. Bauke and St. Mertens, Universality in the level statistics of disordered systems. Phys. Rev. E, 70:025102(R) (2004).
2. St. Mertens, Phase transition in the number partitioning problem, Phys. Rev. Letts. 81:4281-4284 (1998).
3. St. Mertens, Random Costs in Combinatorial Optimization. Phys. Rev. Letts. 84:1347-1350 (2000).
4. St. Mertens, A physicist's approach to number partitioning. Phase transitions in combinatorial problems (Trieste, 1999). Theoret. Comput. Sci. 265:79-108 (2001).
5. C. Borgs, J. Chayes and B. Pittel, Phase transition and finite-size scaling for the integer partitioning problem. Random Struct. Algorithms 19:247-288 (2001).
6. M. R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and related properties of random sequences and processes. Springer Series in Statistics. Springer-Verlag, New York (1983).
7. A. Bovier and I. Kurkova, Poisson convergence in the restricted k-partitioning problem. WIAS preprint 964, to appear in Random Structures \& Algorithms cond-mat/0409532.
8. A. Bovier and I. Kurkova, Local energy statistics in disordered system: a proof of the local REM conjecture. Commun. Math. Phys. 263:513-533 (2006).
9. C. Borgs, J. T. Chayes, S. Mertens and B. Pittel, Phase diagram for the constrained integer partitioning problem. Random Struct. Algorithms 24:315-380 (2004).
10. C. Borgs, J. T. Chayes, S. Mertens and Ch. Nair, Proof of the local REM conjecture for number partitioning I: Constant energy scales, http://arxiv.org/abs/cond-mat/0501760, to appear in Random Struct, Algorithms.
11. C. Borgs, J. T. Chayes, S. Mertens and Ch. Nair, Proof of the local REM conjecture for number partitioning II: Growing energy scales. http://arxiv.org/abs/cond-mat/0508600
12. A. Bovier, Statistical mechanics of disordered systems. Cambridge University Press (2006).
13. A. Kuptsov, private communication. To be detailed in G. Ben Arous, V. Gayrard, and A. Kuptsov, A new variant of the REM universality, to appear.
14. H. Koch and J. Piasko, Some rigorous results on the Hopfield neural network model. J. Stat. Phys. 55:903-928 (1989).
15. A. Bovier and I. Kurkova, Derrida's generalised random energy models. I. Models with finitely many hierarchies, Ann. Inst. H. Poincaré Probab. Statist. 40:439-480 (2004).
16. A. Bovier and I. Kurkova, A tomography of the GREM: beyond the REM conjecture, Commun. Math. Phys. 263:535-552 (2006).
17. B. Derrida, Random-energy model: an exactly solvable model of disordered systems. Phys. Rev. B 24(3):2613-2626 (1981).

[^0]: ${ }^{1}$ Research supported in part by the DFG in the Dutch-German Bilateral Research Group "Mathematics of Random Spatial Models from Physics and Biology" and by the European Science Foundation in the Programme RDSES.
 ${ }^{2}$ Weierstraß-Institut für Angewandte Analysis und Stochastik, Mohrenstrasse 39, 10117 Berlin, Germany, and Institut für Mathematik, Technische Universität Berlin, Strasse des 17. Juni 136, 12623 Berlin, Germany; e-mail: bovier@wias-berlin.de
 ${ }^{3}$ Laboratoire de Probabilités et Modèles Aléatoires, Université Paris 6, 4, place Jussieu, B.C. 188, 75252 Paris, Cedex 5, France; e-mail: kourkova@ccr.jussieu.fr

